April 1971

A PARADIGM FOR REASONING BY ANATOGY

by
Robert E. Kling

Paper accepted for presentation at the Second IJCAI,
London, England, September 1-3, 1971,

Artificial Intelligence Group
Technical Note 47R

SRI Project 8973

The research reported herein was sponsored by the Advanced Research
Projects Agency and the National Aeronautics and Space Administra-
tion under Contract NAS12-2221,

SH Iternational

el i BN
7 7T NN

International
P~ ®

SR A
—

333 Ravenswood Ave. * Menlo Park, CA 84025
1415, 326-62007 o TWX: 91973‘(3—2045 s Telex: 334-486

rn
N

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
APR 1971 2. REPORT TYPE 00-00-1971 to 00-00-1971
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Paradigm for Reasoning by Analogy £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SRI International,333 Ravenswood Avenue,M enlo Park,CA,94025 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A paradigm enabling heuristic problem solving programsto exploit an analogy between a current unsolved
problem and a similar but previously solved problem to simplify its search for a solution isoutlined. It is
developed in detail for afirst-order resolution logic theorem prover. Descriptions of the paradigm,
implemented L1SP programs, and preliminary experimental resultsare presented. Thisisbelieved to be
thefirst system that develops analogical information and exploitsit so that a problem-solving program can
Speed its search.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 19
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A PARADIGY FOR REASONING BY ANALOGY

Robert E. Klimg
Stanford Research Inmstitute
Menlo Park, Califoraia
T.5.4A.

© ABSTRACT

A paradigm enabling heuristic problem solving
programs %tc exploit an analogy Between a durrent
unsolved problem and 8 similar bul previously
solved problem to simplify its search for a solu~
tion iz outlined. It is developed in detail for
a first-order resolution logic theorem prover.
Bescriptiens of the paradigm, implemented LISP
programs, and preliminary experimental results
ayrg presented. This is believed %o be the first
system that develops analogical information and
exploits if so that a problem~solving program can
speed itg sezreh.

INTRODUCTION

An intslligent man thinks deeply and learns
from his past experiences. Contemporary theorem—
proving and problem-selving systems are sontinu-
ally designed to think ever more deeply znd to
ignore their past completely. A problem solver
designed in any of the contemporary paradigms
{such as reselution (I}, GP5 (2), and REF-ARF (3})
solves the same problem the same way each time
it is presented. 4 fortiori, they are unable to
exploit similarities between new and old problems
to nAsten the search for a solution to the new
one. ZORBA, outlined in this paper, is a a;ra-
digm for handling some kinds of amalogies. This
is the first instance of a system that derives the
analogical relationship between two problems and
outputs the kind of information that can be use-
Fally employed by a problem-solving systenm to
expedite its search. As such, ZOURBA is valumble
in three ways:

(1) It shows how nontrivial analogical reason-
ing {AR}) can Be performed with the tech-
nical devices familiar teo heuristic pro-
grammers, e.g., tree search, matching,
and pruning.

*In Ref. (4), I show that there are several kinds
of analogies from an information-processing
point of viegw. ¥We should hardly expect one
paracigm te include them all. Restrictions on
the varieties of ansliogy handled by ZO9BA are
described in the section entitled "Nevessary
Conditions for an Analogy.”

(2) It provides a conerste information-
processing framework within which and
zgainst which one can pese and answer
guestions germiain to AR,

{3) Bince it is implemented (in LISP), it is
available as a research tosl 4s well as
a gedanksn tool.

The last two contributions are by far the most
important, although our attention will focus upon
the first. In the §0's and 60's, many researchers
felt that analogical reasoning would he ap impor~
tant addition to intelligent problem-selving pro-
grams. However, ne substantial proposals were
offered, and the idea of AR remained rather nebu~
loug, merely a hope. ZOREBA may raise more ques-
tions of the "what if?" wariety than it answers.
However, now, unlike 1%68, we have an elemsntary
framework for making these guestions and their
answers operationsl.

ZORBA PARADIGM

Although prior to ZORBA there were no conerete
paradigms for AR, there was an unarticulated un-
developed paradigm within the artificizl intel-
lipencs zpeitgeist, Buppese a problem solver had
solved some problem P and hae its solution 5. I
a program is to solve a new, analogous FA’ it
shouwld do the following:

{1} Examine 5 and construct some plan (schema)
8’ that could be used to generate 5,
(2) Derive some analogy G: PA =+ P,

{3} Construet ﬁul(sl) =5 .

{4} Execute S'A to get Sﬂ, the solution to ?a.

1f P was solved by executing a plan, then s’

would be available and step {1} could be omitied,
Although nobody has explicated this ldea in pub-
lications, from various conversatiens with workers
in the field, I believe that the preceding descrip~
tion is ¢lose to the paradigm that many would have
pursusd. As such, 1t comstituies the (late-60's}
conventional wisdom of artificial intelligence.
Certainiy this {planning) paradigm fs atiractively
eclegant! However, in 1869, when this research
was begun, it was an inappropriate approach for
tWOo TeRsSons:

{1} There are no planning-orienied problem
solvers that are fully implemented and
operate in a domsin with interesting
nontrivial analogies. This state of

$FLa§§ER at MIT and QA4 at SRI are two current
plarning-oriented problem selvers that are under
development. The first is partially isplemented
and the second exists only on paper. It is not
yet ¢lear what problem-solving powsr PLANNER will
have, aad how effective it will be in domains
with interesting analogies.

R. E. KLING

affairs probably will change in the next
few years, but it now renders difficult
any research that depends on the existence
of such a system,

(2) Given the plans generated by such a sys-
tem, it is hard to know a priori at what
level of generality the derived analogy
will map into an executable analogous
plan.* 1f SA fails, is O too strong, or
wrong? Should G be modified and a variant
S; computed, or should the system keep
C, and just back up its planner and gene-
rate an alternative subplan using its own
planning logic? At best this is a rather
complex research issue which would in-
volve a good planning-oriented problem
solver as an easily accessible research
tool. At worst, the preceding paradigm
may be too simple and the development of
a suitable C may be interactive with how
much successful problem-solving has pro-
ceeded so far. (A complete G should not
be attempted befofe some problem solving
begins and is extended as needed in the
course of solving PA.)

Happily, there is an alternative approach that
circumvents the preceding difficulties. Consider
a system that has solved some problem P and is
posed with a new (analogous) P, to solve. Clearly,
it must operate on some large ﬁata base sufficient
to solve both P and P,. (See Figure 1.) In ad-
dition to the subbase for solving P and PA there

CATA BASE D

FIGURE 1 VENN DIAGRAM OF THEOREMS IN DATA BASE

are likely to be even more theorems in the set
D-(p, UD,). Now, given P it is impossible to
infer & minimal D . In practice, a user may se-
lect some D, s.t. D © D_ < D which the problem
solver will access to solve P. If one studies
the searches that problem solvers generate when

*
See Bef., 4 for a discussion of this issue,

they work with nonoptimal data bases, it is ob-
vious that many of the irrelevant inferences that
are generated are derived from the data-base as-
sertions (theorems, axioms, facts) in D - D, (or
Dy — Dl). In fact, as the number of theorems ir-
relevant to the solution P becomes large, the
number of irrelevant inferences derived from this
set begins to dominate the number of irrelevant
inferences generated within D_ and its descendants
alone. In fact, while a problem solver might
solve P given an adequate and small D_, it may be
swamped and run out of space before a solution
given a D, that is much larger than needed.
Clearly, one effective use of analogical informa-
tion would be to select a decent subset D, of D
such that size [D.] £ size [D.] << size [D]. For
example, a typical theorem in algebra provable by
QA3"=-a resolution logic theorem proof--may re-
quire only 10 axioms (D_) while the full alge-
braic data base has 250 axioms., 1If a system
could select a D, such that size[D,] = 15 axioms,
a massive saving in search could be had. In fact,
the theorem that would be unprovable on a D with
sizelD] = 250 would now be provable.

A second kind of information that would be
useful to help solve P, would be a set of lemmas
{or subgoals) L, ... , whose analogs CG(L_)}, ...
G(L) could be solved bﬂ the system before at-
tempting P,

At this point I will not discuss hgw to recog-
nize a lemma® and generate its analog;9 instead,
I merely want to note that lemmas may be effec-
tively used without using a planning language

£
Even given an optimal data base, a problem
solver will generate some irrelevant inferences.

In general, automatic problem solvers and theorem
provers run out of space rather than time when
they fall to solve a problem. Ernst{(2) empha-
sizes this point with regard to GPS, and I have
had similar experiences with Qa3{5), a resolu-
tion logic theorem prover.

?Recognizing lemmas depends upon the problem-
solving system. For example, in resolution
logic, some good criteria for lemmahood are:
(1) A ground unit used more than twice {or
k times) in a proof.
(2) A unit that is a merge.
{3) A clause that is the "least descendant"
of more than 2 {or k) units.

“Generating a lemma depends upon the system's
ability to associate variables with variables
and that may be tricky when skolem functions are
introduced.

R. E. KLING

that forces backup in case of failure. Suppose we
somehow get G(L;), G(L.). A typical planner
would order the G(L;), e.g., G(Ly), G(Ly) ... ete.,
attempt to selve them in sequence, and stop if any
lemma fails to be sclved. In contrast, we merely
need to attempt each G(Li)‘ If we get a solution,
add G(Li) to the data baSe (like a theorem)™ and
continue with the next lemma. If we fail, con-
tinue anyway. At worst, we wasted some computation
time. ©Each useful G(Li) decreases the number of
steps in the solution of P, and may decrease the
depth of the solution tree. Thus, lemmas are
helpful in getting a faster solutien. Note, how-
ever, that a successful G(L.) need 223 be used in
the solution of Py. It is merely available.

Thus, we are not bound by the fail-backup orienta-
tion of sequential planning logics.

In summary, if we use analogical information
to modify the enviromment' in which a problem
solver cperates, we can effectively abbreviate the
work a problem solver must perform. Of course, a
well=-chosen environment will always lead to a more
efficient search. Usually, we have ho idea how to
tailor a subenvironment automatically to a par-
ticular problem. Here we do it by exploiting its
analogy with a known scolved problem. Now, the
representations used, the analogy~generating pro-
grams, and the types of additional information
output will depend upon the problem-solving system
{(and even the domain of application). Any further
discussion needs to specify these two items.

APPLICATIONS TO RESOQLUTION LOGIC

The preceding discussion referred to any
problem solver and is just a proposal. Computer
programs have been implemented toc apply this para-
digm to a resolution logic theorem prover, QA3.(5)
For the class of analogies these preograms handle,
this is an accomplishment. When we begin to focus

'l
In fact, under some conditions, the axioms used
to solve G(Li) may be deleted from Dy so that
size {D,) 1s decreased, and G(L;) is not at-
tempted again inadvertently during the solution
of P_.

A

Here environment is synonymous with data base.
But it can also include permissible function
orderings (in predicate calculus) and other kinds
of restrictive information. Each rule restricting
the "environment' could be translated into an
equivalent new decision rule restricting the ap-
plication of the irnference procedures of the
problem solver. However, I find it easier to
think of ZORBA in terms of modified environments
rather than (the ecuivalent) modified decision
rules.

upon a particular paradigm, two issues are more
easily resoclved:

(1) What kinds of information are most useful
to provide te the problem sclver?

(2) Which representations shall we use to
describe the analogies and handle the
necessary data?

Resolution logic is an inference rule whose
statements are called clauses.*(l),(5) Thus, a
resolution-oriented analogizer will deal with
clauses and their descriptions. "In contrast, GPS
uses sets of objects to describe its states, and
we would expect that an analogy system devoted to
GPS would deal with (complex) objects and their
attributes. Table 1 contrasts the kinds of in-
formation helpful to QA3 and GPS. An analogy
facility developed for GPS would bhe oriented to

its peculiar information structures instead of
clauses and axioms indigenous to resolution.

Table 1

KINDS OF INFORMATION HELPFUL TOQ QA3 and GPS

QA3 (Resolution) GRS

Relevant axioms Relevant operators

Abbreviated difference
table

Expected predicates

Lemmas Subgoals

Admissible function
nestings

Restrictions oh operator
applicatiens

I want to digress briefly and describe the
kinds of theorems that the implemented system,
ZORBA-I, tackles. Briefly, they are theorem pairs
in domains that can be axiomatized without con-
stants (e.g., mathematics) and that have one-one
maps between their predicates. The theorems are
fairly hard for QA3 to solve. For example,
ZORBA-I will be given proof of the theorem

Tl. The intersection of two abelian groups
is an abelian group
and is asked to generate an analogy with

TZ2. The intersection of two commutative rings
is a cummutative ring.

*A clause is an element in the cenjunctive normal
form of a skolemized wff in the predicate cal-
culus, For example: — person [x]
¥ father [g(x); x] is the clause associated with:
¥x person [x] -* 3y father [v;x) (every person
has a father).

R. E. KLING

Given

T3. A factor group G/H is simple iff H is a
maximal normal subgroup of G.

Generate an adequate analogy with

T4. A quotient ring A/C is simple iff C is a
maximal ideal in A.

None of these theorems are trivial for contemporary
theorem provers. (See Table 2, in a later sectionm,
for a listing of additional theorem pairs.) T,
has a 35-step proof and Ty has a 50-step proof in
a decent axiomatization. A good theorem prover
(QA3) generates about 200 inferences in searching
for either proof when its data base is minimized
to the 13 axioms required for the proof of T; or
to the 12 axioms required for the proof of Ty.

If the data base is increased to 20-30 reascnable
axioms, the theorem prover may generate 600
clauses and run out of space before a proof is
found, Note also that the predicates in the prob-
lem statement of these theorems contain conly a few
of the predicates used in any proof. Thus, T1

can be stated using only [INTERSECTION; ABELIAN},
but a procf requires {GROUP; IN; TIMES; SUBSET;
SUBGROUP; CC&GMTATIVE} in addition. Thus, while
the first set is known to map into [INTERSECTION,
COMMUTATIVERING], the second set can map into
anything.

Figure 2 shows a set P including all the
predicates in the data base.

ALL
PREDICATES

IN DATA BASE
o

FIGURE 2

VENN DIAGRAMS OF RELATIONS
IN STATEMENTS T, T,, AND D’

We know Pl and Pzr the sets of predicates in the
statements of the new and old theorems, Ty and T.
In addition, we know the predicates P; in some
proof of T (since we have a proof at hand). We
need to find the set P; that contains the rela-
tions we expect in some proof of T,, and we want

a map Q: G(Pl) = P2.

Clearly, a wise methed would be to flnd some
G', a restriction of C to Pl such that G’ (Pl)
P,. Then incrementally extend G’ to Cl, G’ 2, i
each on larger domains until some G’ (PL) = P;.
ZORBA-I dces this in such a way that each incre-
mental extension picks up new clauses that could
be used in a proof of TA‘ In fact, if we get no
new clauses from an extended G that may be rea-
son to believe that G/ is faulty The next sec-
tions will describe the generation algorithm in a
little more detail.

ZORBA'S REPRESENTATION OF AN ANALOGY

In the preceding sections I have implied that
an analogy is some kind of mapping. The ZORBA
paradigm--e.g., using an analogy to restrict the
envirconment in which a theorem prover works--does
not restrict this mapping very much. For differ-
ent intuitively analogous theorem pairs, this
mapping would need to be able to asscciate predi-
cates (and axioms) in a one-one, one-many, or
many-many fashion, possibly dependent upon con-
text. For other theorem pairs, one-one mappings
and context-free mappings are adequate. ZORBA-I
is a particular set of algorithms that restricts
its acceptable analogies to those which map
predicates one—ohe with no context dependence.

It allows one-many asscociations between axioms;
e.g., one axiom of the proved theorem is asso-
ciated with one or more axioms that will be used
to prove the new, analogous theorem. More ex-
plicitly, a ZORBA-I analogy (G is a relation

GP x G° x GY, where:

(1) & is a one-one map between the predi-
cates used in the proof of the proved
theorem T and the predicates used in the
proof of the unproved theorem Tpo

2) G is5a one-many mapping between clauses.
Each clause used in the proof of T is
associated with one or more clauses from
the data base D that ZORBA-I expects to
use in proving T,.

(3) GY is a many-many mapping between the
variables that appear in the statement
of T and those that appear in the state-
ment of TA'

Different sections of ZORBA-I use these
various maps, e.g., GV and/or CP and/or G°,
Usually I will drop the superscript and simply
refer to "the analogy G." Thus "the analog of an
axiom ax, under analogy G" should be understood
to mean C[ax], and will often bg mentioned
simply as "the analog of ax, "

In the previous section I refer to a sequence
Z0OFBA-I usually does
Rather, it

of analogies Gy, ... Q.
not develop G° in one step.

R. E. KLING

incrementally extends some limited analogy into
one that maps a few more variables, predicates,
or clauses. This process is described in full
detail in the next few sections, Here, I just
want to define several terms that refer to this
process. When I refer to "the analogy between

T and TA" I refer to a mapping that includes
every variable in the statement of T, and every
predicate and clause used in the proof of T.

This "complete” mapping is obtained as the final
step of a sequence of mappings that contain the
associations of some predicates and some clauses.
I refer to these incomplete mappings as ~partial
analogies,” In addition, we are concerned with
an important relationship between two (partial)
analogies. A (partial or complete) analogy Gk is
an extension of a partial analogy Gj if some of
Gy, e-g-, Gg, Gg, GY, is a submap restriction of
the corresponding submap Uy to a smaller domain.
Intuitively, when we add a new predicate or
clause association to Oy so as to create Gy, we
say that Gj has been extended to G . We are now
ready to survey ZORBA-I.

AN OVERVIEW OF THE ANALOGY-GENERATING ALGORITHM

I want to describe the ZORBA-I algorithm in
two stages, first briefly in this section and
then in greater detail in the following two sec-
tions, I will precede these descriptions by some
background on the representations and information
available to the system.

ZORBA~I is presented with the following:

(1) A new theorem to prove, T,.
(2) An analogous theorem T (chosen by the

user) that has already been proved.
(3) Proof[T] that is an ordered set of

clauses ¢ s.t. Tk cy is either

(a) A clause in T

(b) An axiom

(c} Derived by resolution from two

clauses
ci and cj j<kand i < k.

These three items of information are problem-
dependent. In addition, the user specifies a
"semantic template” for each predicate in his
language. This template associates a semantic
category with each predicate and predicate-place
and is used te help constrain the predicate
mappings to be meaningful. For example,
STRUCTURE[SET; OPERATOR] 1s associated with the
predicate "group.” Thus, ZORBA-I knows that "A"
.15 2 set and "*" is an operator when it sees
groupla; *¥]. Currently, the predicate types (for
algebra} are STRUCTURE, RELATION, MAP, and REL-
STRUCTURE; the variable types are SET, OPERATOR,
FUNCTION, and OBJECT.

In addition, ZORBA-I can make up a description
descr[c] of any clause ¢ according to the fol-
lowing rules regarding the predicates of c.

(1) V_s.t. p and 7 p appear in ¢, impcond[p]

e descr[c].
(2) ¥ s.t. p appears in ¢, poslp] € descrlc].
(3) Y s.t. —p appears in ¢, negip]

€ descr(c].

Thus, the axiom, every abelian group is a group,
e.g., 7(x*)} abelian [x;*] = group [x;*] R
is expressed by the clause
cl:—1abelian [x; *] V group [x;*] ;
which is described by
neg [abelian], pos [group]

Each element of a description, e.g., pos[group],
ts a "feature” of the description, Each feature
corresponds to one predicate, so the number of
features in a clause equals the number of predi-
cates in the clause. The theorem, the homomorphic
image of a group is a group, e.g.,

¥ * X
(x vy 1 é?)
hom [®;x;y] A group [x; *]
= group [y; *,]
is expressed by the clause

¢, hom [Pix;y] V — group [x:*ll vV group [y; *,]

and 1s described by
neg[hom], impcond[group] .

Two different clauses may have the same description,
let:

c3: =1 intersection[x;y;2] V subset[x;y]
cq: — intersection[x;y;z] V subset{x;z] .
Then!

descrlc_]} = descr[cq] = neglintersection],
pos[subset]

Clause descriptions are used to characterize
the axioms whose analogs we seek. ZORBA-I selects
as analeogs clauses that have descriptions that are
close to the analogs of the descriptions* of axioms
in the known axiom set. Although in a specizl
context ZORBA-I actually uses an ordering relation
on a set of descriptions to find a "best clause,"
it usually exploits a simpler approach. We will
say that.a clause c satisfies a description d 1ff
d € descr[c¢]. Thus, several clauses may satisfy
the same description.

*
The "analog of a description” is defined later.

R. E. KLING

Let:
c_: = intersection[x;y;z] V — grouply; ¥]
V'~ grouplz; #] V grouplx; *]

CG: — subgroup[x;y; *] V — subset[x;y]
Then, the following statements are true:

(1) {cz,c5} satisfy impcond{groupl

(2) {cl,cz,cs} satisfy poslgroup]

(3) ¢; satisfies neglabelian], pos[group]

(4) {C3,C4,C5} satisfy pos[subset]

(5) cg satisfies neg[subgroup], pos(subset]

(6) No clause of these six satisfies
pos[intersection]

Clearly, if a description contains only a few
features, then several clauses may satisfy it.

The semantic templates are used during both
the INITIAL-MAP (when the predicates and variables
in the theorem statements are mapped) as well as
in the EXTENDER, which adds additional predicates
needed for the proof of TA and finds a set of
axioms to use in proving Ta. The clause descrip-
tions are used only by EXTENDER.

I intend the brief description that follows
to provide an overview of ZORBA-I in preview to
the next two sections of text, which describe it
in considerable detail. In addition, this preview
section may be a helpful "roadmap” for reference
when the reader immerses himself in the details
that follow later on.

ZORBA-I1 operates in two stages. INITIAL-MAP
is applied to the statements of T and TA to create
an Gg, which i3 used by EXTENDER to start its se-
quence of &P and G}, which terminate in a complete
G. INITIAL-MAP starts without a priori informa-
tion about the analogy it is asked to help create.
Both GP and G’ are empty when it begins. It uses
the system of the wffs that express T and T, as
well as the restrictions imposed by the semantic
categories to generate GE and G{ that include all
the predicates and variables that appear in the
two wiffs, For example, the statements of T; - Tp
can contain three of the nine predicates used in
proof[T;] and the statements of T, - T, €an con-
tain five of the 12 predicates used in proof[Tal.
In brief, it provides a starting point from which
EXTENDER can develop a complete Q.

The INITIAL-MAP uses & rule of inference
called ATChMATCH[atoml;atom2;G], which extends
analogy by adding the predicates and mapped
variables of atom; and atom, to analogy G. Thus,
ATOMMQTCH now limits ZORBA-I to analogies where
atoms in the statements of T and TA map che-one.
IRITIAL-MAP is a sophisticated search program

*
Atoms, not predicates.

that sweeps ATOMMATCH over likely pairs of atoms,
one of which is from the statement of T, the other
from the statement of TA‘ Alternative analogies
are kept in parallel (no backup), and INITIAL-MAP
terminates when it has found some analogy that in-
cludes all the predicates in the theorem state-
ments. This one is output as GE.

EXTENDER accepts a partial analogy generated
by INITIAL-MAP and uses it as the first term in a
sequence of successive analogies Gj' The axioms
used in proof[T] are few in comparison to the size
of the large data base and comprise the "domain"
for a complete G¥. For each axiom used in proof[T],
we want to find a clause from the data base that
is analogous to it. The axioms used in proof[T]
are called AXSET and are used by EXTENDER in a
special way. Each partial analogy G? is used to
partition AXSET into three disjoint subsets called
ALL[G,], SOME[G], and NONE:[Gj].

If all the predicates in an axiom ax, € AXSET
are in GP, then ax,_ is in ALL[G.]; if some of its
predicates are in Eg, then ax, {s in SOME[Q .];
and if none of its predicates are in Gg, theén ax
is in NONE[G.]. For brevity, these sets will be
called ALL, gCNE, and NONE, and their dependence
on Gj will be implicit. This partition is trivial
to compute, and initially, none or a few ax, are
in ALL, and most ax, belong to SOME and NONE. We
want to develop a sequence of analogies Gj: i=1,
... n, that contain an increasingly larger set of
predicates and their analogs. If an axiom is con-
tained in ALL, then by definition we know the ana-
logs of each of its predicates. It cannot assist
us in learning about new predicate associations.
In contrast, we know nothing about the analogs of
any of the predicates used in axioms contained in
KONE, Analog clauses for these axioms are hard
to deduce since we have no relevant information to
start a search. Unlike these two extreme cases,
the axioms in SOME are especially helpful and will
become the focus of our attention. For each such
axiom we know the analogs of some of its predi-
cates from ;. These provide sufficient informa-
ticn to begin a search for the clauses that are
analogous to them. When we finally associate an
axiom with its analog, we can match their respec—
tive descriptions and associate the predicates of
each that do not appear on GP, we can extend G,
to G ..., and thus the analogd of axioms on SOME
provide a bridge between the known and the un-
known, between the current Gj and a descendent
Gj+1. When EXTENDER has satisfactorily terminated,
ALL = AXSET, SOME = NONE = B. 5o the game becomes
finding some way to systematically move axioms
from NONE to SOME to ALL in such a way that for
each ax;, moved, some analog G [axk] = axé is found
that can be used in the proof of TA' Moreover,

each new assoclation of clauses should help us
extend Gj - G-J._._1 by providing information about
predicates not contained in Gj.

A DETAILED DESCRIPTION OF INITIAL-MAP

At heart, ZORBA-I is a heuristic program de-
signed to generate analogies between theorem pairs
stated in a subset of predicate calculus. It has
been desighed and implemented in a fairly medular
manner to facilitate understanding and ease of
generalization. Thus, much of the system can be
described in algorithmic terms. In this section
I hope to blend some appreciation of the heuristic
foundations of the program while describing its
operation with algorithmic clarity. ZORBA-I uses
an interesting set of searching and matching rou-
tines, which have been empirically designed,
generalized, and tested on a set of problem pairs
(T1 ~ Ty and T3 = T4 are fair representatives of
this set}. The control structures of INITIAL-MAP
and EXTENDER have been designed to pass fairly
similar structures to the various match routines
{described below). Thus, the following descrip-
tions will cover cases where the structures to be
mapped are fairly similar. For example, most of
the routines that match sets of items assume that
the sets are of equal cardinality and that they
will map one-one. Such assumptions are valid for
a large class of interesting analogies (such as
the group~ring analogy in abstract algebra) and
simplify the description of the various proce-~
dures., Analogies that require weaker assumptions
and more complex procedures are described else-
where. (6)

In the previous section I motivated the design
of INITIAL-MAP and EXTENDER, which generate a re-
stricted analogy and expand it to cover all the
relations and axioms necessary for the new proof.
ZORBA-I can be easily expressed in terms of these
two functions as follows:

*
zorbal[newwff;oldwff;AXSET]: =

(1) 8et analogies to the list of analogies
generated by initial map[newwff; oldwff].
(2) Apply extender[analogy; AXSET] to each

analogy or analogies.
(3) PReturn the resultant set of analogiles.

The preceding description allews that there may
be more than one analogy generated by either
INITIAL-MAP or EXTENDER. In practice, however,
each tends to geherate but one {good} analogy.
In the following paragraphs I will describe

*
ANSET is the set of axioms that appears in
proof[T].

INITIAL-MAP in some detail. EXTENDER will be dis-
cussed in the next section.

INITIAL-MAP is designed to take two first-
order predicate calculus wiffs and attempt to gene-
rate a mapping between the predicates and variables
that appear in them. The variable mapping infor-
mation is used to assist INITIAL-MAP in mapping
predicates in cases of sSeeming ambiguity; INITIAL~
MAP outputs a set of associated predicates that
appear in the statements of Ty and T. This re-
stricted mapping is used as a starting analogy by
EXTENDER, which finds a complete mapping for all
the predicates used in proof[T]. As a byproduct
EXTENDER finds analogs for each of the axioms on
AXSET. INITIAL-MAP (unlike EXTENDER) does not
reference ANSET, the set of axioms used to prove
T, and is symmetric with respect te caring which
wiff represents the proved or unproved theorem.
INITIAL~MAP uses atommatch[atoml;atong G] as a
rule of inference to add the predicate/variable
information to analeogy G. As its name hints,
ATOMMATCH matches the predicates and variables of
its atomic arguments and adds the resultant mapping
to the developing analogy ¢Gy.

ATOMMATCH is used as an elementary operation
by every matching routine in the INITIAL-MAP
system (Figure 3}. Thus, we will discuss it first

|ATOMMATCH f‘—| INITIAL-MAP |

ATOMMATCH HSINGLEMATCHH SETMATCH |

, TEMPSIFT | | MULTIMATCH|

| ATOMMATCH | | MULTIMATCH) ’—'TQTOMMATCH

TEMPSIFT

ATOMMATCH

FIGURE 3 HIERARCHY OF MATCHING ROUTINES

CALLED BY INITIAL-MAP

and then consider how INITIAL-MAP is organized to
apply it intelligently. Consider how we might
write an ATOMMATCH. Suppose, atomj and atomg are
of the same order (same number of variables) and
each variable place in each atom has the same se-
mantic type. For exanple, let

atoml = intersection[xl;xz;xa]

atom2 = intersection[yl;yz;ya]

R. E. KLING

Clearly, we want

intersection * intersection

* =
LY, o, i=1,2,3

8o, if atom; = plxy; ... xn]

and x

and at =qly ; ...
nd atomy = qly, Ym]
and p = q (thus, n = m)
we will set p*™q

and x, v i=1,2,...,n

N Yi;) ’

So far ATOMMATCH is quite trivial. Suppose, how-
ever, p # g orn # m,

For example, let atoml = group[x; *1]

* it .
2t *g]

Clearly we want to associate the set x with the
set y and the operator *) with either or both of
*2 and +2. ATCMMATCH can know which variables
represent sets, etc., by checking the semantic
templates associated with group and ring. Now,
the template associated with group is structure
[set; operator] while that asscciated with ring is
structure[set; operator;operator]. We will map
variables with each other so as to preserve
predicate place ordering and semantic type. To
handle the unequal number of variables, we will
temporarily expand the atom group [x;*l] to in-
clude a dummy variable of type operator,
“dummyop,” and will rewrite it as grouplx, *;;
dummyop]. ‘The symbol "dummyop” is used to expand
either (or both) atoms to be of the same order
and a variable (possibly dummy) of the same se-
mantic type in corresponding places in each atom.
Then we can map the variables one-~one in order of

and atom2 = ring [y;

appearance. For example we can associate
X"y
and
* ,d (x , +
(1’ ummyop) **{ 2 2)

Then we can remove dummyop and rewrite

* (x4
1 2’7 2)
We can describe this process formally in two

stages.

(1) Make the two atoms type~compatible and
of the same order by adding dummy
variables whenever necessary,

let atom, = p[x.; ...x]
1 1 n

atom
2

n

q[ylz ...ym]

*
I will use a double-headed arrow '™ as in

"
Y

x* y" to mean "x is associated with (analogous
to) yv."

template [atoml] = typelp] [type[xl] ... type
[x 1]
n
template [atomz] = typelg] [type[yll ... type
[ym]]

Furthermore, suppose that the ordering of the types
is the same in each template, even though the
number of variables of each particular type need
not be identical for corresponding "type blocks."
Thus, in the preceding example, in both "'group”

and "ring" the type set precedes the type operator.
Each template has one set variable, but a differing
number of operator variables. Thus, we could par-
tition the ordered set of variables in atom; and
atom, by letting some x; and X1y belong to the
same partition if type[xi = type{xi+1]. Now there
are an equal number of partitions in both a‘t:om1

and atomg. Returning to ocur example, we partition
group[x;*lj into [[x],[*l]] and the ring[y;*2;+2]
into [f¥y1,[* ;+2]]. (The brackets indicate that
the order of elements is preserved.)

(2) Map the partitioned subsets into each
other, preserving their order within the
partitions, and map elements into elements
if the two subsets have an equal number
of elements.

This completes our brief description of
ATOMMATCH. From now on, we will consider ATOMMATCH
as an elementary operation that will expand the de-
veloping analogy to include a (possibly) new predi-
cate pair and (possibly) new pairs of variable
associations. We need to know how to select pairs
of atoms from the statements of T and TA to be
ATOMMATCHed .,

We have two wifs representing T and T, as
arguments of INITIAL-MAP, and we want to find some
way to slide ATOMMATEH over pairs of atoms se-
lected from the wffs. First, note that the syntax
of the wffs may be a helpful guide in selecting
potential matches.

Suppose T:A = p(x)
TA:B = ql(y) 5
where A and B are any wffs.
We would presume that p* q (predicates)
xX™ y (variables)

and A~ B (sub-wffs)

r

where we expect that wifs A and B would be decom-
posed down to atoms for ATOMMATCH. If A and B
had implication signs in them, we could decompose
them similarly. There are many possibilities for
the forms of T and T,. We find that if T and T,
are closely analogous, then their syntactic forms
are likely to be very similar. ZORBA, considers

R, E. KLING

T and Ty to have the formats that can be repre-
sented by the generative grammar below

T A=A
- A .
A p[x1 xn] |p[x1 xn]

INITIAL-MAP is designed to decompose the in-
put wffs T and T, into associated syntactic sub-
structures until a subwff is either an atom
p[xl . xn] or a conjunction of atoms

X p,Dx, +ee %]

i=]1
At this point it enters a hierarchy of selecting
and matching routines (Figure 3) to decide which
pairs of atoms shall be ATOMMATCHed. Naturally,
if the subwffs are just atoms it calls ATOMMATCH
directly. Otherwise, it enters a program hier-
archy headed by a routine named SETMATCH, which
selects appropriate atom pairs from the sets of
conjuncted atoms in the subwffs.

In the following discussion, the number of
atoms conjuncted in each set are assumed equal
(k = 2. SETMATCH can be described in terms of
its subfunctions as follows:

W
Setmatch [setl; setz; anaj: =

(1) Partition the atoms in set; and sety
inte subsets that have identical semantic
templates (a "semantic partition’").

Thus if set; is groupix; *1 A abelian
[y; *] A intersection[z;x;y] the se-
mantic partition will be
[[intersection[z;x;y]}[group[x;*]J
abelian[y;*]}} since group and abelian
are hoth of type structl[set;op].

(2) Select the partitions of set; and setp
that have but one element and call these
sing1 and singz, respectively.

(2) The remaining partitions have more than
one element; call them mult; ard mult,,
respectively,

(4) Match the atoms in sing1 with those in
singp by executing singlematch[singl;
singz;ana].

(5) Match the remaining atoms by executing

multimatch[multl; mu1t2; anal.

SETMATCH, SINGLEMATCH, and MULTIMATCH are all
heuristically designed one-pass matching strate-
gies that make strong assumptions about the na-
ture of the theorem statements T and Ty for an
analogous theorem pair.

b 3

When an analogy O is referenced within the de-
scription of an algorithm, it will be represented
as a variable ana wherever that is more convenient.

SETMATCH assumes that the atoms in set and
set, will map one-one and that the semantic parti-
tions will map one-one. Suppose, we have a se-
mantic partition thus:

i = t
part:tionl {[atoml atom2] {a om,, atom4}} [atoms}

partition2 = [[atom atomT} {atomB atomg}} [atom }

[10
SETMATCH assumes that {atomS} and [atomlo} will
correspond, rather than [atoms} and, say {atom6
atom;}. It calls SINGLEMATCH to map the single-

atom partitions onto the single-atoem partitions.

In addition, it calls MULTIMATCH to map, in
pairs, the partitions ceontaining several atoms
each.

MULTIMATCH assumes that the analogy will pre-
serve semantic type sufficiently well so that
atoms within a particular partition will corre~
spond only to atoms in one other partition.

Thus, 1if fatom ,atomz} e [atome,atomT}

1
t
atom,

then - at0m6 or atom,

7

or atom .
7

It forbids matches across partitions, such as

a'l:om2 =~ atom

** atom
6

* at
om8

hd at0m7, etc.

atom
1

t
a om2
atom3

SINGLEMATCH and MULTIMATCH also share a common
default condition. If all but one of the elements
of a set X are mapped with all but one of the ele-
ments of a set ¥, then these two elements are as-
sociated by default without any further decision
making. In SINGLEMATCH the sets X and Y are sets
of atoms or partitions of atoms.

SINGLEMATCH [set ;setz;ana] may be easily de-
scribed in terms of this default condition and a
function called tempsift[sl;sz;testfn;ana].
TEMPSIFT applies testfnlx;y] to the first element
of s; and eash successive element y of 22 until
it finds a ¥y € s, such that testfnlx;y']1 = T.

It then executes

2

atommatch[x;y';ana] B

increments to the next element of x of s , and
seeks another y” € 8y, such that testfn[x ;y”] =
T, etc. Thus, for every x £ 5_, 1t finds the
first y ¢ s, such that testfn[x;y] = T and exe-
cutes atommatch[x;y] = T. Typical testfns check
whether x and y have the same semantic template
or are analogs of each cther according tc the de-
veloping analogy, ana. Singlematch[setl;setzz
anal]: =

(1) If set; and set, have but one element
("terminal default conditien™), go to 8.

R. E. KLING

(2) Execute tempsift[setl;setz;testfnl;ana],
where testfni[x;y] is true iff x and y
have the same semantic template.

{2) If setl and set, are empty, go to 9.

If the terminal default condition is
true, go to 8.

{4) Execute tempsift[setl;setz;testfnz;ana],
where testfnplx;y) is true iff the pre-
dicate letter in atom y is the analog
of the predicate letter of that in
atom X according tc analogy ana.

(5) If set; and set, are empty, go to 9.

If terminal default conditions holds,
go to 8.

(6) Execute tempsiftlset ;setz;testfns;ana]J
where testfng[x;y] 15 true iff the type
of the predicate appearing in atom x is
the same as the semantic type of the
predicate appearing in atom y.

(7 1If set) and set, are empty, go to 9.

If the terminal default condition holds,
go to 8. Otherwise print an error
message and halt.

(8) Apply ATOMMATCH to the remaining atoms
of set., and setz.

(9) STOP.

To illustrate the preceding algorithm with a
simple example, let ‘

setl = [intersection[x;y;z], abeliangroup[x;*]]

set2 = [intersection[u;v;w],
commutativering[u;*;+ﬂ]

Step Z assoclates
intersectionfx; y;z] © intersection[u;v;w]

and the terminal default condition associates
abeliangroup[x; *] © commutativeringl[u; *;+] .

MULTIMATCH 1s a little more complex than
SINGLEMATCH., First we need to decide which pare-
titions are to be associated before associating
atoms within partitions. Suppose we have two
sets of partitions set1 and setz. If both sets
have but one partition each (a common case),
then we expect these to be assoclated by default
and declare them accordingly. Secondly, if in
some partition of set; there is an atom with
predicate p which is known to be analogous to
predicate g, then the partition in set, that con-
tains q should be assoclated with that which con=-
tains p. Remember that these partitions were
constructed on the basis of semantic templates,
Thus, while several atoms containing a predicate
p may be in a particular partition, there will
be only one partition that contains atoms with
predicate p. Iastly, if in set; and sety there
is but one partition that contzins atoms whose

predicates have the same type, e.g., STRUCTURE,
then we expect these partitions to be associated.
Let MULTIMATCH]1 name the function that actually
associates atoms within 2 partition according to
analogy ana.

MULTIMATCHIsetl;setz;ana]:=

(1) If the terminal default condition for
partitions holds, go to 7.

(2) Let pred(x] = the predicate letter of
atom x. For each partition y, sequence
through eéch atom x € y. If pred[x] is
on analogy ana find the partition z ¢
set2 such that the analog of pred[x] ap-
pears in z. Execute MULTIMATCH1
[y;z;ana] for each such pair y,z.

(3) If the terminal default condition heolds,
go to 7. I sety and set2 are empty, go
to 8.

(4) For each partition y & setl, select the
first atom x. Find a partition z € set,
such that the type of predicates in =z
equals type [x]. If there is only cone
such z E sety, execute MULTIMATCH1Ly;z;
ana].

(5) If the terminal default condition holds,
go to 7. If set; and set, are empty, go
to 8.

(6) If set; or set, is still not exhausted,
print an error message and halt.

(7) Apply MULTIMATCHl1 to the remaining parti-
tions in setl and setz.

(8) STOP.

Each set of atoms in a partition has the same
semantic template. This property defines a par—z
tition. Thus, at the level of abstraction pro-
vided by the templates, all of these atoms are
alike and any differences need to be discriminated
by other criteria. Let us consider an example to
motivate the design of MULTIMATCHL. The theorem
pair T - T, can be written as:

4
T, ¥ (g,m,x,*) grouplg; 1] A
propernormal[m;g;*l] A factorstructure[x;g;m)
A simplegrouplx; *1] = maximalgroup[m;g; *1]
T; V(r;n;y;*é+é) ring [r;*2;+b] A
properideal[n;r;*2;+é] A factorstructurely;r;n)
A simplering[y;*2;+é] = maximalring[n;r;*2;+é]
First ZORBA-I associates:
maximalgroup = maximalring
m*n
E™Tr

LI & I]
¢ 2?2

v

R. E. KLING

when it decomposes Té - T, into subwffs dis-
tinguished by the syntax of the implication sign.
later an application of SINGLEMATCH adds:

propernormal = properideal
factorstructure = factorstructure
X"y

MULTIMATCH is passed one partition from each wff.
T; contributes

{group[g;*ll, simplegroup[xi*ll],
and T; contributes

{ring[r;*2;+é], simplering[y:*2;+b]].

If we apply the MULTIMATCH algorithm just
described to each of these partitions, we find:

Step 1. We do not satisfy the terminal de-
fault condition.

Step 2. None of the predicates that appear
in these partitions appear on the
current analogy. We gather no new
information here.

Step 3. We still do not satisfy the terminal
default condition.

Step 4. We want to use MULTIMATCH1 to asso-

ciate the atoms in these partitions.

0f these two partitions, the former pair have the
template structure[set;operator] and the latter
pair have structure[set;operator;operator].
Fortunately, our apalogy has varizble mapping in-
formation that is quite relevant here. We know
that:

g™ r

X"y .

We can assume that if some variable appears in
only one atom in a partition, the analogous atom
is one that contains its analog variable, if it
too appears in only one atom. For example, the

variable "g' appears only in grouplg;*], and its
i+,1. 5o, we

"r'" appears only in ring[r;*2- P

analog r
deduce:;

group[g;*ll - ring[r;*2;+é]
A similar argument based upon
x™y
leads us to deduce:
simplegroup[x;*lj - simplering[y;*2;+é]

although we could have also deduced this last
association by our terminal default condition.
Notice that “*1" is not a diseriminating variable
since it appears in both group[g;*l] and simple-
group{x; *]. After each atom pair is associated,
we apply ATOMMATCH to it to deduce more variable
associations and update our analogy.

The preéeding description of MULTIMATCHL can
be simplified and generalized by realizing that
we are just using a specialized submap of the de-
veloping analogy to extend it further. This
special submap is just that mapping of variables
where each variable appears in only one atom of
the partition. In the preceding example, the
submap was just:

g r
x =y .
Multimatchl[partitionlzpartitionz;ana]: =
(1) Set El to a list of variables that appear

in o;Iy one atom of partitionl.

(2) Set 12 to similar list computed on
partitionz-

{(3) Set anaprs = {x’' =~ y'|x' 3 El’ y' € 22
and y' is the anzlog of x' E; ana}.

{4) Execute tempsift[partitionl;partitionz;
testfnq; anal], where testfn4[u;v] is
true iff for some variable pair x' e y' £
anaprs variable x' appears in atom u and
variable y' appears in atom v.

(5) STOP,

INITIAL-MAP has been completely described.
At this point we have sufficient machinery to
generate a mapping between the predicates and
variables that appear in the statements of theorem
pairs such as T1 - T2 and T, - Tq. Next we want
to extend this mapping to include all the predi-
cates that appeared in the proof of the proved
theorem T and are likely to appear in the proof
of the new theorem T,. In addition, we would like
to pick up a small set of axioms adequate for

T,.. EXTENDER performs both functions.

proving A

A DETAILED DESCRIPTION OF EXTENDER

In the last section I described INITIAL-MAP
in substantial detail. In comparison, EXTENDER
is a far more complex and subtle system which I
will explicate here less completely. I intend to
accomplish several simple aims with this limited
exposition:

(1) Expose the reader to the motivation and
rationale underlying the EXTENDER design.

(2) Convey some appreciation for the flavor
of gome well-specified computational al-
gorithms for creating an analogy.

(3) Provide an intelligible, self-contained,

introductory account of EXTENDER zdequate
for the general reader, and motivate the
more sophisticated specialist to consult
(6)

a more complete exposition.

R. E. KLING

The rationale of EXTENDER depends upon a few
simple related ideas. I will begin by explicating
these, then develop MAPDESCR--the clause descrip-
tion mapping operation--and conclude with a dis-
cussion of two simple versions of EXTENDER.

In the‘last section I suggested that our com-
plete analogy could be seen as the last map Gn
in a series G, of increasingly more complete
analegies. Although we may be developing several
such series in parallel, they all begin with the
same (j--the analogy produced by INITIAL-MAP.
Each 0. maps some subset of the predicates that
appear in the proof of theorem T. Each distinct
subset will, in general, lead to a different par-
tition of AXSET into [ALL, SCME, NONE}. When we
search for the analog of an axiom (clause), we
will look for some clause that satisfies the
analog of its description under the current
analogy. Each clause has a unique description,
descr(ec], which has been introduced in a previous
section. We will denote the analog of descr(c]
by some analogy GJ as O (descr[e]]. Gj[descr[c]]
is equal to a copy of descrlc] in which every
predicate that appears in G, is replaced by its
analogous predicate. Predicates that are absent
from Gj are left untouched. For example, Suppose
we have a trivial Gj:

Gl: abelian * commutativering

c7: — abelian[x; *] V group[x; *]

d7: neglabelian),pos{groupl. = descr[c7]
Gl[d7] =neg commutativeringl,pos[group].

Suppose we.rre seecking to extend G; by finding
the analog of cg. 1t is quite unlikely that we
will find a clause that satisfies this descrip-
tion, (Gl[dT])’ since it would be derived from
some (rare)} theorem that relates a condition on
commutative rings to a group structure. In any
event, it would not be an analog of c;. If we
sought all the clauses that satisfied neglcommu-
tativering), we would be sure to include cg and
Cq, which at least include cg, the clause we
desire,

caz'ﬂ commutatiyering[x;*;+i V ringlx; *5+])

cg: 7 commutativeringl[x; *+] V commutativel[*;x]
Thus, sometimes we want to search for clauses that
satisfy descriptions with features, e.g.,
neg[commutativering], that contain only predicates
that appear on a particular amalogy Gj' Now,
what we are doing is a four-step process:

(1) Make a description d for an axiom
clause c, descr[c].

(2) Create an analog description Gj[descr[c]]
for the current analogy, Gj'

(3) Delete from Gj[descr[c]] any feature that
contains a predicate that does not appear
Denote this restriction of
Gj[descr(c)] to Gj by Gj[descr(c)].
Search the data base for clauses that

satisfy Gj[descr(c)].

in CG..

(4)

In our example, GITEE;E;TE-T? = G (4] =
neglcommutativering]. G, [descr(c)] is a ''restric-
tion of the analog of the description of ¢ to
analogy G?." Since this phrase is guite cumber-
some, we will simply call it a "restricted descrip-
tion" and implicitly understand its dependence on
Gk,

J

At different times EXTENDER may seek clauses

that satisfy a complete analogous description

Gj[descr] or just a restricted cne Gj[descr]. In

summary, EXTENDER relies upon four key notions:

(1) An ordered sequence of partial analogies
Gj_

(2) A partition of the axioms used in proof
[{T] (AXSET) into three disjoint sets:
ALL, SOME, and NONE.

(3) A search for clauses that satisfy the
analogs of the description of the clauses
in proocf[T].

(4) A restriction of our descriptions rela-

tive to an analogy Cj by including only
those features with predicates that ap-
pear in Gj.

INITIAL-MAP used an operation called
ATOMMATCH in a rather clever way to extend its
current analogy. Likewise, EXTENDER uses an
operation called MAPDESCR for a similar purpose.
Both operations use abstract descriptions in order
to associate their data: ATOWMATCH uses the
mantic template associated with a predicate, and
MAPDESCR uses the description of the clauses it
is associating. EXTENDER and INITIAL-MAP differ
in that EXTENDER generates @& new partial analogy
each time it activates MAPDESCH (and the resultant
mapping is new) while INITIAL~MAP uses ATOMMATCH
to expand one growing analogy.

se-

Each partial analogy GJ is derived from its
antecedent Gj~1 by adding

(1) An association of one clause ax, € SOME
with one or more clauses from the data
base.

(2) An association of the predicates in

those clausges,

A simple exmemple will illustrate this amply. If
G, is the initial analogy generated by INITIAL-
MAP applied to the pair of theorems Tl—Tz, its
predicate map is

R. E. KLING

abelian * commutativering
intersection < intersection.

Suppose we know that c, ** We would like to

extend Gl to G, by adding:

CB.

(1
(2}

c7 * g
abellan * commutativering
group ™ ring.

To motivate the structure of MAPDESCR, let
us design a version of it that would enable us
to extend Gl to Gz in this example. MAPDESCR is
charged with mapping neglabelian], pos[group]
(d7) with neg[commutativeringl, poslring],
it knows that:

when

Gl: abelian * commutativering
intersection ** intersection.

First, we can eliminate negl[abelian] from d7 and
neg[commutativering] from d_ on the basis of G
which associates "abelian'” and commutativerlng.

Gy[neglabelianl] = neglcommutativeringll.
Now we are simply left with associating pos(group]
and posiring]. Since these are the only two
elements left, have the same semantic type
(STRUCTURE), and have the same feature (pos), we
can map them by default and add

group ** ring

to Gz.

Now, we can write a version of MAPDESCR
which accepts as arguments two clause descriptions
and an analogy G :

J

H 'G =
mapdescr[descrl,descrz, j]

b} ’ .t. G €
(1) Vxx ¢ descrl 5.t J[x] descrz,

delete x from descrl and G [x] from

J

descrz. Thus, we exclude all those

features we know about from Gj.

(2) Vxx ¢ descr1 and x € descrz, map the

predicate that appears in x into itself

and delete x from descrl and descrz.

(3) In the remnants cf descrl

(a)

and descr_!
2

If there are unique elements of
descrl and descr2 that have the

same feature, e.g., pos, and se-
mantically compatible predicates,
associate those terms and delete
them from the remnant descriptions.
Here "semantic compatibility” means
"same semantic tvpe.'

13

(b

If more than cone element of descrl

and descr2 have the same feature,

e.g., pos, then discriminate within

these elements on the basis of the

semantic types of their predicates.
Return the resultant list of paired
predicates.

(4)

Most often in my algebra data base a clause de-
scription consists of two, three, or four features.
EXTENDER ensures that some of the predicates in
any pair of clauses passed on to MAPDESCR are con
Gj' Thus, by the time we reach step 3 of the
MAPDESCR algorithm we often have descriptions of
length one, which map trivially by default, or
descriptions of length two with different features,
e.g., pos and neg. Thus, step 3b, which requires
disambiguation based upon predicate types, occurs
rarely in this domain (abstract algebra}.

When MAPDESCR returns a list of predicates
pairs that result from mapping the description of
a clause cl(descrl, above) with the description

of a clause cz(descrz, above) according to analogy

G., it creates a new analogy Gj+1‘ is the

JJ
same as G except that

n

GJ+1

Its predicate map is the union of the
one returned by MAPDESCR and the one
appearing on Gj.

Its clause mapping is the union of the
cne appearing on GJ and ¢, *

(2)
Cq-

Thus, when EXTENDER is attempting to extend
G., it creates a new analogy G etc. for
each clause pair it maps when %hose iauses were
selected on the basis of information in Gj. of
course, there is a procedure to see whether the
predicate asseciations of a new analogy have ap-
peared in some previously generated znalogy and
thus prevent the creation of redundant analogies.
In this case the two corresponding clauses are
added to each existing analogy for which the
predicate pairs returned by MAPDESCR are a subset
of 1ts clause map.

After I explicate one additional idea I can
describe a simple version of EXTENDER. When
EXTENDER is extending Gj it is searching the
large data base for some clause that is the analog
of an axiom ¢, € SOME. Now we could search for
the set of clauses that satisfy Gjldescrlegl],
but we will run into the difficulty described
earlier in this section. Thus, we search for
clauses that satisfy Gj[descr[ck]]. If G? con-
tains the correct analog for each predicate that
appears oh it, then the set of clauses C that
satisfy G, [descr[ck]} is guaranteed to contain
the des1red analog of o ("image" of ck) We

R. E. KLING

will refer to C as the 'candidate image set.”

Suppose that C has but one member, c’. Then we

know that ¢ is the analog {image) of ¢y and
-G iati

should extend GJ 3+ by associating

!

(o] c

k
When the set of clauses that satisfies a re-
stricted description contains only one, we are
guaranteed that it is the image clause we seek

if GP does not contain any erroneous associations.

Now, if C 1s empty, we have reason to suspect
the correctness of G and we ought to stop de-
veloping this branch of the analcgy search
space. On the other hand, if C has more than
one member, and GP is correct, we know that our
desired image is in C. If we have a clause ¢
with description deser[e] and some analogy Gj
that contains only one of the predicates in ¢,
then Gj[descr[c]] will have but one feature and
many clauses will satisfy it. If some later
analogy Gj (Gg c GE) includes ancther predicate
from ¢ in addition to the one on G, then
ﬁk[descr[c]] will have two features and will be
satisfied by fewer clauses than Gjldeser(e]].
Thus, as sequence of analogies evolve, each
clause will have decreasingly fewer candidate
images that satisfy its restricted description.

To search for the clauses that satisfy the
analog of a restricted (short) description,
EXTENDER, invokes an operator shortdescr{G 1.

SHORTDESCR is dependent on Gj in three ways:

(1) It searches for the analogs of clauses
that appear on SOME (which is different
for each Gj)'

(2) It generates descriptions that include
only the predicates that appear expli-
citly in Gj.

(3)

It uses the predicate map Gj.

SHORTDESCR returns a (possibly empty) 1list of
axioms (from SOME), each of wbich is paired with
a set of clauses from the data base which satisfy
the annlog of its restricted description. Each
axiom is guaranteed to bave its annlog under U
in its associated "candidate image set." If we
find no candidates at all, for any ax € SOME,
then we know that GJ contains some wrong predi-
cate asscciations, and we ought to mark it as
"infertile" and discontinue attempting to extend
it. O©Of the images we find, we prefer those
axiom-candidate associations with but one candi-
date image. If we apply MAPDESCR to each such
pair, we can be sure that we have a consistent
extension of G,, Let us consider a primitive
verslion of EXTENDER, EXTENDER1, which exploits
these few ideas.

EXTEND1 [GI;AXLIST]:=

14

(1) Let analist = (CG;), the set of active
analogies.

(2) 1f G is complete, STOP.

(3) Partition AXLIST into [ALL,SOME,NONE}
relative to Q..

(4) Set imlist to shortdeser[C.]. 1If
imlist = @, mark Gj as BARREX and go to 7.

(5) Set unimages to the subset of imlist that
has only one candidate analog for each
axiom. If unimages = &, go to 7.

(6) Apply MAPDESCR to each axiom and its
analog that appears on unimages. If
MAPDESCR adds a new analogy, add it to
the end of apnalist.

(7) If analist is empty, STOP, Otherwise,

set &, to the next element on analist.
Go to 2.

The success of EXTENDL is highly dependent
upon the clauses in the data base., 1If there are
few clauses then it is likely that some ax, €
SCAIE will have but one image under SHORTDESCRH at
each iteration and that EXTEND1 will be successful.
As the data base increases in size with ever more
clauses involving predicates that will appear in
proof[TA], then it becomes more likely for

SHORTDESCR to generate several images for every
ax, & SOME in some iteration. At this point it

will fail to EXTEND (U, and miss the analegy al-
together. To remedy this situation, we need a
way for dealing with cases when SHORTDESCR returns
several candidate images for each ax, € SOME. We
need some way to select the clause from the can-
didate set that is most likely to be the analog
we seek. When EXTENDER meets a situation of this
sort, it orders all the images according to their
likelihood of being analogous to the ax, € AXSET
with which they are paired. I will initiate the
description of one such ordering relation by a
simple example.

and an

Consider, for example, the clause €0

analogy Gz that includes
intersection = intersection
subgroup * subring

abeliangroup ** commutativering

¢t subgrouplx;y; *] V 7 grouplx; ¥] V —
grouply: *] V — subsetx;y]
d10 = neglgroupl, neglsubset], posl[subgroup]

Gz[dlo] = pos[subring].

Suppose our data base contains two clauses ¢

11
that satisfy G_[d_ 1:
and € ¥ 2[10]
eyt subringlmr; %+ V 7 ideal [mjx; %+]
dll = neglideall, posl[subringl
c19: subring[x;a; *+] ¥V - ringla; % +]
- V = ringlx; ¥ +] V — subsetix;al
d12 = neglringl, neglsubset], pos[subring].

R. E. KLIXG

We can compare c and €5 by comparing dl1 and
djs with d o (relative to Gz). e want a partial
ordering of a set of descriptions relative to a
target description and a particular analogy, e.g.,
a ¢d[d1;d2;d;ﬁj], that orders deseription d

with respect to d,. A simple ¥4 can be developed
as follows:

f
d = - Q
let 1 dl j[d]
, —
d, = 4, - Gj[d]
d’ = d- G [d]
3

For d{ and dé compute the number of features,

e.g., pos, in common with d'. The description
with the most features in common is closest to d.

In our example, we have
/

dlo = neglgroupl, neglsubset]
af .
d = negl[ideal
11 gl]
diz = neglring), neglsubset].

Clearly d’ is closer to d/ than d' ; SO we
select d our closest description and ¢ as the
image of c¢__ under Gz' After MAPDESCR maps

®C i add:

CIO 12 it will add

group ¥ ring
subset © subset

to G to create an @_:
2 0 °F Sl

a. intersection © intersection
3 subgroup * subgroup
group © ring
subset ® subset.

A more sophisticated Pg can look at the semantic
types of predicate that share common features if
two deseriptions are equivalent undexr the simple
Pq described above. EXTENRDER uses an operator
called MULTIMAP to select the best image (using
@d) for a clause that has several candidates
images with 2 restricted description under Gj‘
Exploiting thils notion, we can write a more
powerful EXTENDER called EXTENDZ2,

EXTEND2 [Gl;AXSET]: =

(1} Let analist = (G ... G;), the list of
active analogies. Start with analist =
G,).

2y 1f Gj is complete, STOP,

(3) Partition AXSET into {ALL, SOME, NONE}
relative to Gj.

(4) Set imlist to shortdescr[G,]. If
imlist = B, mark G; as "in%ertile" and
go to B.

(5) Set unimages to the subset of imlist

that has only one candidate analog for
each axiom. If unimages = B, go to 7.

(6) Apply MAPDESCR to each axiom and its
analog that appears on unimages. If
MAPDESCR adds a new analogy, add 1t to
the end of analist. Go to B.

Apply MULTIMAP to imlist to select an
optimal candidate image under P4 for
each axiom. BSet unimages to this list
of axioms paired with best candidates.
Go to 6.

If analist is empty, STOP. Otherwise,
set Gj to the next element on analist.
Go to 2.

(7}

(8)

This version of EXTENDER is quite powerful

and will handle a wide variety of theorem pairs.
The reader who is interested in the behavior of
EXTENDER in generating the sequency GJ is referred
to 2 more detailed report (6) for case studies and
further explication. The implemented versions of
EXTENDER are far more complex than these simpli-
fied tutorial versions, They (1) allow backup,
(2) have cperations for combining a set of partial
analogies intc a ""larger'” analogy consistent with
all of them, (3) have a scophisticated evaluation
for declding which particular axiom-candidate set
to pass to MULTIMAP (in lieu of step 7 above), and
(4) can often localize which predicate associa-

tions are contributing to an infertile analogy
when one is generated. Table 2B contains a brief

summary of ZORBA-I's behavior when it is applied
to five T=TA pairs drawn from abstract algebra.
The number of partial analogies generated in-
cludes Gl generated by INITIAL-MAP.

Table 24

THEOREMS REFERENCED IN TABLE 2B

Tl. The intersection of two abelian groups
1s an abelian group.
T2. The intersection of twe commutative
rings is a cummutative ring,
T3. A factor group G/H is simple iff H is a
maximal normal subgroup of G.
T4. A quotient ring A/C is simple iff C is a
maximal ideal in A.
TS. The intersection of twa normal groups is
a normal group.
T6é. The intersections of two ideals 15 an
ideal.
T7. The homomorphic image of a subgroup is
a subgroup.
T8, The homomorphic image of a subring 1s a
subring.
T9. The homomorphic image of an abelian
group is an abelian group.
T10. The homomorphic image of a commutative

ring is a commutative ring.

R. E. KLING

-
-]
-
)
W T o=
S 0 e 1
“Led
o
=0 o le] 3] w o8 L=
o~ o Q
g B N
5@
@ = C
= A
E
E]
=
=]
w 58 g
oog [
[]
- =7 =
o n H wn b= m b= 0w
w 8 0 - — = - ko
L E v 2 =
z z 3 3
= g% :
|&]
o v
E -
H o= e,
= Q = o~
=] 2 I 4]
™ oo _—
— QO E &] ™ — o] = +
21 1 A 0 o ~ — 5] ~
— - E —~ O (=
= £ z & & °
£ S “
™ ™~
0
24 L < 4]
o 0 « A -
o 8
b S - I - &
=1 a g g_s 3] fle} m LS o~ =
[l -ty
2 E @ @)]
£ Za4g” -
7] = b
E o
] Q
L= -] =3
0O+ 5 2
= 0O [+]
Moo oQ [} o =2} n =
g - = — 7]
2T e +
E @ =
ER]
- - E
3]
* =
2] o
- 2
o o] i
2 o = 0 © -
5] E= = e — E
E o
Q 1 1 1 T 1 &
T4 Q
Q - [3¢] Eled [3d a Q
[} o} = =] =
= =
= *

NECESSARY CONDITIONS FOR AN ANALOGY

ZORBA-I has three necessary conditions for
creating an analogy. The first, created by the
form of ATOMMATCH, pertains to the form of the
statements of T and TA'

(1} In the statements of T and T,, atoms
must map one-one from T to TA'

Notice that we do not insist that predicates map
one-one. Consider an INITIAL-MAP hetween

TI1: The intersection of two abelian groups
is an abelian group
and
T5: The intersection of an abelian group

and a commutative ring is an abelian
group.

T1': abelian [aﬁ;*ll N abelian [b;* 1 A
intersection[e;a;b] = abelian[c;*ll
15’ abelian{x; %] » eringly; *,;+,] A

intersectionfz;x;y] = abelian[z;*zl
ATOMMATCH can map
abelian[c;*l] - abelian[z;*zl
and abelian[b; * * ecrin [
d abelian[b; 1] ingly o 2]

at different times and handle many-one predicate
maps. However, the EXTENDER would need to know
(and it does not yet) how to handle this ambiguous
information.

The second restriction is created by tbe ex-
tension of the analogy by finding image clauses
that satisfy tbe incrementally improved analogy.
To state this condition on the image clauses in a
formal way, I need to introduce some simple termi-
nology. Iet us say that a clause c bridges a set
of predicates P, to another set of predicates P2

1
iff:
cp
Pl 2
P1 U preds[Cl = 2
P1 N preds[c] ¥ 9
and (redundantly)}
P2 N preds[c] # #
2
P .
Py Py

Now consider two clauses, ¢y and Coe e w%ll say
that ¢; and ¢, bridge ffom P, to Py if ZP an?
< bridges froT P1 to P and g bridges from P
to Pz. Py C P CP,. Ingeneral, we will say

that an unordered set C of k clauses bridges from
4 L L4

J R
Py to Py 15£ E P, P, Py
such that:
(1y ¥ c1 e C and c1 bridges from Pl to P;
(2) ¥ x =2 ... k-landc €C
e T
¢ bridges from P, to P
g B 3 m
(3) B¢ € Cand ¢ bridges from P to P_.
) k k € k-1 2
Now let:

preds{T] = predicates used in proof of T.
Pr[T] = predicates used in statement of T.
G = analogy from T to TA.

descric] = description of clause c.

Gldescr[cl] = analog description of the
description of ¢ under G,

AXSET = axioms used in proof of T.

R. E. KLING

(2) A necessaryv condition for the EXTENDER
- to work is that:
{a) I ¢ C AXSET and ¢ bridges Pr(T) to
preds(T].
(b) and if Glc] = [¢", ¢ satisfies
Gldeser[c’]] for some ¢’ € ¢
Gi[c] bridges from pr[TA] to preds[TA].

More verbally, some subset of the axioms in
the proof of T that bridge R the domain of
INITIAL-MAP to preds[TA] has a set of image
clauses under O that bridge the images of
INITIAL-MAP to preds[TA]. Thus, the proofs need
not be isomorphic, merely that some subset of the
axioms have a nearly isomorphic set of image.
axioms, similarly restricted te the bridging
condition.

This bridging condition may seem rather non-
intuitive from the vantage point of choosing a
data base, but it should be clear that EXTENDER
imposes this ceondition,

To develeop analogies in domains that are de-
scribed by predicate calculus with constants
would require wholly different analysis algoritims.
Consider a robot that is instructed to go from
SRI to (1) an office on its floor, (2) Stanford
University, (3) San Francisco, {4) New York City,
(5) Chicago. These five problems could be stated

to QA3 as
Tlo' Hsf at [robhot; offices; sf]
T11' Esf at [robot; Stanfeord; sf]
le. Hsf at [robot; San Francisco; sf]
T13. Esf at [robet; NYC; sf]
T14. Esf at [robot; Chicago; sf] R

By trivial syntactic matching we could asso-
ciate office5 with Chicago, Stanford with San
Francisco, etc. The robot's actions to get from
SRI to Stanford or San Francisce, New York City,
or Chicago are pairwise similar. But the
INITIAL-MAP or extender would have to know the
"semantics" of these (geographic) constants
{with respect to SRI) and the robot's actions to
assess which problems are adequately analogical
and which action rules should be extrapolated to
the unsolved problem.

RELATIONSHIP BETWEEN ZORBA-I AND QA3

In the preceding section, I have discussed
the organization and use of ZORBA~1 independently
of QA3. In this section, I merely want to note
how change in QA3 can affect the way in which the
analogical information output by ZORBA-I can be
used.

The present version of ZORBA-I outputs a set
of clauses that it proposes as a restricted data
base for proving TA' If every clause in proof[T]
has at least one image clause, then simply modi-
fying the QA3 data base is magnificently helpful.
However, if the analogy is weak and we have only
a partial set of images, what can we do? If every
predicate used in the proecf[T] has an image, we
could restrict our data base to just those clauses
containing the image predicates. Could we do
better? And what do we do with a partial analogy
in which some clauses and Some predicates have
images, but not all of either? At this point we
meet limitations imposed by the design of QA3.

All contemporary theorem provers, including QA3,
use a fairly homogeneous data base. QA3 does give
preference to short c¢lauses, since it is built
around the unit-preference strategy. But it has
no way of focusing primary attention upon a select
subset of axioms A*, and attending to the re-
maining axXioms in D = A* only when the search is
not progressing well. One can contrive various
devices, such as making the clauses in A* "pseudo-
units" that would be attended to early. Or, with
torch and sword, one could restructure QA3 around
a 'graded memory.” (7) Basically we have to face
the fact that our contemporary strategies for
theorem proving are designed to he as optimal as
possible in the absence of a priori prehlem-
dependent information. And these optimal strate-
gies are difficult to reform to wisely exploit a
priori hints and guides that are problem dependent.
This is not tc say that various kinds of a priori
information cannot be added. Rather, it is a
separate and sizable research task to decide how
to do it. I presume, but do not know, that these
comments extrapolate to other problem-solving pre-
cedures, and a system that is organized around a
priori hints, heretofore user supplied, may look
very different than one which is designed to do
its best on its own. QA3 was chosen hecause it
was available and saved years of work developing

a (new) suitable theorem prover. However, further
research in AR may well benefit from relating to

a more flexible theorem-proving system.

WHAT'S NEW?

What does ZORBA add to our understanding of
AR? What does ZORBA leave unanswered? Pre-ZORBA,
most researchers believed that analogies would
relate to plans and (possibly to probably) include
some sort of semantic information. ZORBA adds the
following insights to our understanding of AR:

(1) Some fairly interesting AR can be handled
by medifying the environment in which a
problem solver operates rather than
forcing the use of a sequential planning
language.

7

(2)

(3)

(4)

(s

(6)

R. E. KLING

Each problem solver/theorem prover will
use different a priori information and
consequently will require different
analogy-generation programs.

A good analcogy generator will output
some informaticn helpful teo speeding up
a problem search as a byproduct of a
successfully generated analogy.

Part of the problem of AR is to specify
precisely how the derived analogical in-
formation is to be used by the problem
sclver.

An effective, nontrivial analogy genera-
tor can be adequately built that uses a
simple theory and primitive semantic
selection rules.

Although analogies are nonformal and are
semantically oriented, nontrivial analo-
gies can he handled by a special system
wrapped around a highly formal theorem
prover.

In contrast, ZORBA neglects:

{1} Methods for handling those analogies
that absolutely require a planning level
generalization and sequential informa-
tion.

(2) Very weak analogies.

(3) What to do with many rules of inference.

(4) How to describe the "structure of an

analogy.”

ZORBA makes a substantial contribution to our

pale understanding of AR, and in the process
helps articulate additional gquestions that reveal
our vast ignorance of analogical ways of kmowing.

1.

REFERENCES

N. J. Nilsson, Problem Solving Methods in
Artificial Intelligence (McGraw-Hill, to be

published 1971).

G. W. Ernst and A. Newell, "'Some Issues of
Representation in a General Problem Solver,"”
AFIPS Conference Proceedings, Vol. 30 (1967),
pp. 583-600.

R. E, Fikes, "REF-ARF: A System for Solving
Problems Stated as Procedures,” Artificial
Intelligence, Vol. 1, pp. 27-120 (1970).

R. E. Kling, "An Information Processing Ap-
proach to Reasoning by Analogy,’ Artificial
Intelligence Group TN1D, Stanford Research
Institute, Menlo Park, California (June 1989).

18

5.

C. Green, "Theorem Proving by Resolution as a
Basis for Question Answering Systems,” in
Machine Intelligence, Vol, 4, D. Michie and
B. Meltzer, eds. (Edinburgh Univ. Press,
Edinburgh, Scotland, 1969}.

R. E. Kling, "Reasoning by Analogy with Ap-
plications to Heuristic Problem Solving: A
Case Study,” Stanford University Ph,D. Thesis
forthcoming.

R. E. Kling, "Design Implications of Theorem
Proving Strategies,” Al Group Technical

Note 44, Stanford Research Institute, Menlo
Park, California (1970).

ACKNOWLEDGMENT

The research reported herein was sponsored by

the Advanced Research Projects Agency and the

National Aeronautics and Space Administration under

Contract NAS12-2221,

